Multi-controlled electrodes in Electrochemical Systems

From intermittent renewable electricity input to 24/7 sustained hydrogen output

B. Weninger, 21-6-2019 ECCM conference, The Hague UNVO

Applied and **Engineering Sciences**

Sustainable planet for next generations

Renewable generation: - time patterns, location,...

Distribution:

- export import
- storage and transport
- electrification,...

Towards sustainable production of chemicals and fuels

Users requirements:

- households,
- industry,
- transport,..

ŤUDelft

Nickel-Iron battery

System Integration

BATT-ery & electr-OLYSER
BATTOLYSER

"The battolyser is a device that works as a <u>rechargeable</u> <u>battery</u>, and that is capable of performing highly <u>efficient electrolysis</u> with any <u>excess electricity</u>."

Curtailment: wasting the renewables

Total wind energy Netherlands 2018 **10 TWh!** Curtailment renewables Germany 2018 5.4 TWh

Hydrogen production from renewables

TUDelft

Hydrogen production from renewables

Fossil fuel usage

Global energy-related CO₂ Emissions 2015

Future: Shifting from fossil fuels to renewables

Hydrogen/Hydrogen derived fuels for: Power and Transportation

Hydrogen production from renewables + backup power

Hydrogen production from renewables + backup power

Hydrogen production from renewables + hydrogen storage

Hydrogen production from renewables + hydrogen storage

New: Hydrogen production from renewables with Multi-controlled Electrodes

- Backup power
 - Reduction of required electrical storage capacity -85%
 - 7 times more H_2 release with the same backup power
- Hydrogen storage
 - Easy and instantaneous H₂ storage and release
 - H_2 storage density 18.5 kg H_2/m^3 (~300 bar gas cylinder)

Only 3% additional electricity for time-shifting 50% of the hydrogen production

H₂ Storage & MC electrodes

Simultaneous operation of 3 electrodes in one cell with two controllers

H₂ Storage & MC electrodes

Simultaneous operation of 3 electrodes in one cell with two controllers \rightarrow *Multi-controlled: decoupling of external conditions* & H₂ production

Implications MC electrodes

Adjust material usage to storage demands Electricity: Ni, Fe Hydrogen: Fe Oxygen: Ni Addition of Fe -> H_2 storage

Remove Ni -> Electrolyser with H₂ storage Charge + O_2 generation when electricity is abundant H_2 generation with little backup power Comparison: continuous electrolyser

7 x H₂ from charged Fe with same backup power

7 x H₂ from charged FE with MC electrodes

ŤUDelft

Electrolyser with hydrogen and oxygen storage

MC test series with 4 electrodes operational simultaneously

Electrolyser with hydrogen and oxygen storage

MC test series with 4 electrodes operational simultaneously

Electrolyser with hydrogen and oxygen storage

MC test series with 4 electrodes operational simultaneously

Upscaling: Battolyser with MC electrodes in array

Independent control of all currents (only redistribution of currents within assemblies of negative electrodes)

ŤUDelft

Simultaneous electrical discharging & H₂ production

• Electrodes in array serve two purposes!

Configuration with MC electrodes

- Simultaneous operation of electrodes
 - Storage
 - Production
 - Material usage to storage needs
- Scalable to larger arrays
- Electricity sink for renewables
 - Stop curtailment
 - Speed up wind/solar installation
- H₂ release with –85% backup power
- Only 3% extra energy input

TUDelft Bernhard Wening

Configuration with MC electrodes

- Simultaneous operation of electrodes
 - Storage
 - Production
 - Material usage to storage needs
- Scalable to larger arrays
- Electricity sink for renewables
 - Stop curtailment
 - Speed up wind/solar installation
- H₂ release with –85% backup power
- Only 3% extra energy input

The future

⁽image: www.rank-ag.de)

From intermittent renewables to 24/7 sustained hydrogen output

Acknowledgements

Project leader: Fokko Mulder

Audrey Iranzo

Andrea Mangel Raventos

Robin Möller-Gulland Bernhard Weninger

Technical support:

Joost Middelkoop Herman Schreuders

Students:

Jordan Beekhuis Paul Bruinen

Falco Vernooij Fleur Besteman

ŤUDelft

<u>Sponsor:</u>

Applied and Engineering Sciences

& industrial partners

Publications:

F.M. Mulder, B.M.H. Weninger, J. Middelkoop, F.G.B. Ooms and H. Schreuders, Efficient electricity storage with a battolyser, an integrated Ni-Fe battery and electrolyser **Energy Environ. Sci.,** 2017, 10, 756-764, **DOI:**10.1039/C6EE02923J

B.M.H. Weninger and F.M. Mulder, Renewable Hydrogen and Electricity Dispatch with Multiple Ni-Fe Electrode Storage **ACS EnergyLett.,** 2019, 4, 2, 567-571, **DOI:**10.1021/acsenergylett.8b02488

Losses

50% storage & delayed generation \rightarrow 3% extra electricity input

Hydrogen production from renewables

Reaction Scheme

Energy requirement for gas production from SE

ŤUDelft

Hydrogen production from renewables + backup power

(Nel hydrogen, Norway, Glomfjord)

Hydrogen production from renewables + backup power

Battolyser: Hydrogen and oxygen output characteristics

- Gas output follows SOC of electrodes and electricity input
- Day/night fluctuations:
 1/3 of charge for electricity storage
 2/3 of charge for hydrogen production
- Infrastructure has to cope with H₂ output Requirement: sustained H₂ input

How can we turn intermittent electricity input into continuous hydrogen output?

ŤUDelft